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THE TWO-FREQUENCY , BISTATIC, RADAR-OCCULTATION METHOD 
FOR THE STUDY OF PLANETARY IONOSPHERES 

A b s t r a c t :  A method f o r  t h e  s t u d y  of  p l a n e k a r y  ionosphe res  

i s  p r e s e n t e d  which i s  based on t h e  u s e  of  r a d i o  waves pro-  

paga ted  between t h e  ea r th  and a s p a c e c r a f t  on an o c c u l t i n g  

t r a j e c t o r y  beyond t h e  p l a n e t .  Phase p a t h ,  g roup  p a t h ,  o r  

ampl i tude  measurements made d u r i n g  s p a c e c r a f t  immersion 

i n t o ,  and emersion from, t h e  o c c u l t e d  zone could  be used  t o  

deduce v e r t i c a l  e l e c t r o n  d e n s i t y  p r o f i l e s  a t  t h e  two l imb 

p o s i t i o n s  probed by the waves. By u s i n g  two o r  more har- 

mon ica l ly  r e l a t e d  f r e q u e n c i e s ,  t h e  i o n o s p h e r i c  measurements 

would be  s e l f - c a l i b r a t i n g ,  t h u s  a v o i d i n g  t h e  extreme mea- 

surement and computa t iona l  p r e c i s i o n  t h a t  o t h e r w i s e  would 

be r e q u i r e d .  Furthermore,  t h e  u s e  of  more t h a n  one f r e -  

quency makes i t  p o s s i b l e  t o  s e p a r a t e  d i s p e r s i v e  i o n o s p h e r i c  

e f f e c t s  from t h e  non-d i spe r s ive  r e f r a c t i v e  e f f e c t s  of  t h e  

n e u t r a l  a tmosphere,  s o  t h a t  b o t h  n e u t r a l  and i o n i z e d  r e g i o n s  

of  t he  atmosphere could be s t u d i e d  i n  some d e t a i l .  It i s  

sugges t ed  t h a t  t h i s  s imple t e c h n i q u e  would be p a r t i c u l a r l y  

a p p l i c a b l e  f o r  t h e  i n i t i a l  e x p l o r a t i o n  of p l a n e t a r y  atmos- 

phe res .  
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Introduction: Not much is known about the ionized upper 

regions of the atmospheres of our neighboring planets and 

existing ionospheric models have a large degree of uncer- 

tainty. As an example, let us consider some ionospheric 

densities suggested for Mars. Chamberlain 119621 gives 

a peak electron density of about lo1’ elec/m3. Computations 

based on atmospheric models developed more recently, however, 

suggest a peak density of the order of 1OI2 elec/m 3 . 
Norton [I9641 finds that the peak density could be as high 

as 2 x 1013 elec/m3, even for quiet solar conditions. The 

main reason for the large uncertainty in the electron den- 

sity is that the ratio between the density of atomic oxygen 

and molecular nitrogen is not known. 

Many of the questions concerning the parameters of the 

Martian atmosphere have now assumed considerable practical 

importance because of the interest in sending orbiters and 

landing probes to the planet. The design of such probes 

can be simplified and the probability of mission success 

improved if the atmospheric parameters can be specified 

with better accuracy. 

To be discussed here is a bistatic radar occultation 

method for the study of planetary ionospheres. Bistatic 

radar is differentiated from monostatic radar in that the 

transmitter and receiver are at different locations in the 

former. For astronomical applications, we imply that one 
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i s  on t h e  e a r t h  and t h e  o t h e r  on a space  probe,  If  the  

t r a j e c t o r y  i s  such tha t  the  space  probe p a s s e s  behind a 

p l a n e t  as viewed from t h e  e a r t h ,  the  r a d i o  r a y  p a t h  from 

t r a n s m i t t e r  to r e c e i v e r  w i l l  p a s s  t a n g e n t i a l l y  through the  

atmosphere and be occu l t ed  a t  t h e  l imb. P e r t u r b a t i o n s  

imposed on the r a d i o  waves by t h e  p l a n e t a r y  atmosphere 

p rov ide  a s e n s i t i v e  measure of a tmospher ic  parameters .  

The b a s i c  q u a n t i t y  i n  such a n  experiment  i s  t h e  p r o f i l e  i n  

h e i g h t  of t h e  r e f r a c t i v e  index  of the atmosphere.  Both 

t h e  n e u t r a l  and t h e  ion ized  r e g i o n s  of t h e  atmosphere w i l l  

i n  g e n e r a l  c o n t r i b u t e  to t h i s  p r o f i l e .  

The main purpose of  t h i s  pape r  i s  to d i s c u s s  i n  some 

d e t a i l  how the two-frequency, b i s t a t i c ,  r a d a r - o c c u l t a t i o n  

method can be u t i l i z e d  f o r  d e t e r m i n a t i o n  of t h e  d i s t r i b u -  

t i o n  i n  h e i g h t  of e l e c t r o n  d e n s i t y  i n  a p l a n e t a r y  ionosphe re .  

I n  a s e p a r a t e  p u b l i c a t i o n ,  emphasis was p laced  on the  d e t e r -  

mina t ion  of t h e  s c a l e  h e i g h t  and d e n s i t y  of t he  lower 

n e u t r a l  atmosphere,  assuming t h a t  measurements a t  on ly  one 

f requency  were a v a i l a b l e  [ F j e l d b o  and Eshleman, 19651, 

A s i n g l e - f r e q u e n c y ,  b i s t a t i c ,  r a d a r - o c c u l t a t i o n  

experiment  i s  to be  conducted u s i n g  t h e  t r a c k i n g  and 

t e l e m e t r y  system of the Mariner  s p a c e c r a f t  due to r e a c h  

Mars i n  J u l y ,  1965. Measurements made a t  a s i n g l e  r a d i o  

f requency  do n o t  a l l o w  exper imenta l  separaL-ion of d i s p e r -  

s i v e  i o n o s p h e r i c  r e f r a c t i o n  e f f e c t s  from the n o n - d i s p e r s i v e  

3 



. 

effects of the neutral atmosphere, The difference in height 

of the two regions may still make it possible to separate 

effects of the neutral atqosphere near the surface from 

higher ionospheric perturbations, if the electron density 

distribution in the ionosphere is sufficiently close to 

being wherically symmetrical. However., one can avoid these 

uncertainties and obtain a more accurate deternination of 

the parameters of both the upper and lower regions of the 

atmosphere by using two (or more) frequencies in such an 

experiment. 

General Discussion: The two-frequency, bistatic, radar- 

occultation method to be discussed here reqrnires a space- 

craft thatmbves along a trajectory which Involves occulta- 

tion by the planetary ionosphere as viewed from the earth. 

Two signals, one at high and one at low frequency, are 

used to probe the ionosphere during immersion and emersion. 

The frqyuencies should be chosen such that the highest fre- 

quency I s  relatively unaffected by t h e  ionized medium and 

can serve as a basis of comparison for the lower frequency. 

Self-calibratlon of this type makes the ioncspheric phase 

path measurement relatively insensitive to possible errors 

in the computed spacecraft trajectory, 

ments of the neutral atmosphere, and single-frequency, 

phase-path measurements of ionospheric effects require in- 

formation on spacecraft motion to a very high degree of 

precision. 

Phbse-path measure- 
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The phase  of t h e  r a d i o  waves w i l l  advance and 

t h e i r  ampl i tude  w i l l  v a r y  as t h e  r a y  paths p e n e t r a t e  t h e  

p l a n e t a r y  ionosphere .  The ampl i tude  v a r i a t i o n s  are  pro-  

duced by f o c u s s i n g  of' t h e  waves, as  t h e  amount of  r e f r a c -  

t i o n  imposed by the  ionosphere  i s  a f u n c t i o n  of  t h e  d e p t h  

of p e n e t r a t i o n  of the  p ropaga t ion  p a t h .  It w i l l  be shown 

'chat con t inuous  measurements of ampl i tude  o r  phase  v a r i a -  

t i o n s  d u r i n g  the  o c c u l t a t i o n  may be used  to de te rmine  the  

e l e c t r o n  d e n s i t y  p r o f i l e  i n  t h o s e  r e g i o n s  of  the  atmosphere 

which a re  probed by t h e  r a d i o  waves. 

F o r  t h e  purpose  of i l l u s t r a t i n g  the  problem, i t  i s  

convenient  t o  u s e  a numer ica l  example worked o u t  on the  

b a s i s  o f  a p a r t i c u l a r  model i onosphe re .  Chamberlain [19621 

developed a model f o r  t h e  Mar t i an  atmosphere which has a 

p r e s s u r e  a t  t he  s u r f a c e  o f  abou t  85 mb. T h i s  model l e a d s  

to an  F1 r e g i o n  a t  an a l t i t u d e  of about  320 km w i t h  a noon 

d e n s i t y  of about  elec/m3. Chamber la in ' s  model iono-  

s p h e r e  a l s o  c o n t a i n s  more d e t a i l e d  a l t i t u d e  v a r i a t i o n s ,  

b u t  f o r  t he  purpose  of i l l u s t r a t i n g  t h e  p r o b l e m , i t  i s  s u f -  

f i c i e n t  t o  u s e  one l a y e r .  The re fo re ,  i n  t he  example to 

f o l l o w ,  w e  w i l l  u s e  o n l y  a s i n g l e  Chapman l a y e r  to r e p r e -  

s e n t  t h e  Mar t ian  ionosphere :  

5 
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For NmaxJ ho> and H, we will use 1011 elec/m’, 320 km, 

and lj0 km, respectively. 

The phase advance due to the ionosphere may conveniently 

be measured by transmitting harmonically related frequencies 

and comparing the pha.se of’ the two signals after they have 

propagated through Lhe Martian ionosphere. 

For the assumed model, one might use 50 Me for the 

lower of the two frequencies. The power requirement at 

this frequency makes it advantageous to transmit from the 

earth and receive in the spacecraft. A second frequency 

could be provided by the tracking and telemetry system, 

The present Mariner-Mars mission uses a telemetry frequency 

of about 2300 Mc [Kliore et al, 19641. For the purpose of 

illustrating the problem, it will in the following be assumed 

that the 50 and 2300 Mc signals are derived from the same 

frequency source and transmitted from the earth to the 

spacecraft. 

subharmonic of the 2300 Me signalscan be counted during 

occultation and telemetered back to the earth to measure 

The beats between the 50 Mc and the 1/46 

ionospheric phase advance vs. time. 

As an approximation to the radio phase effect, one can 

assume straight-line propagation through the ionosphere. 

This simplification gives a first approximation O1 to 

the phase path increase 
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where “.A is the free space wavelength, and p is t h e  

refractive index in the ionosphere. The geometrical quan- 

tities involved are illustrated in Fig. 1. The ionospheric 

phase path increase cP,(p) used in this publication is 

dimensionless since it is normalized to the free space wave- 

length X. 

The magnetoionic theory relates to the electron 

density N, and the radio frequency f by: 

where it is assumed that the radio frequency is much larger 

than the maximum plasma-, collision-, and gyro-frequencies 

of the ionosphere. A l l  formulas given in this paper will be 

in MKS units. A combination of eqs, (2) and ( 3 )  gives 

where c is the free-space phase velocity and I(p) is 

the electron content along the straight-line approximation 

to the propagation path. The function I ( p )  is given by: 

-W 

Figure 2 shows @,(&I) or I(p) for the ionospheric model 

adopted here. The ionospheric phase advance of the 5O-Mc 

signal is seen to reach a maximum of more than 900 cycles. 

7 



. 

STRAIGHT- LINE- 
APPROXIMATION 
TO RAY PATH 

CROSS SECTION’ 
OF PLANET 

(r z s )  SPACECRAFT I s v  

RAY PATH 
ASYMPTOTES 

r 

-RAY PATH FROM THE 
E A R T H  

Fig.  1: RAY PATH GEOMETRY 

- 8 -  



n 

Y 

n 

E 
Y 

Q a 
I 
ua 
L 
Y 

a 

a 

0 
n 
Q 

I 
Q 
Y 

0 
0 
N 

0 
0 
0 - 

0 
0 
OD 

0 
0 w 

0 
0 
d- 

0 
0 
N 

0 

a 
0 
H 

I P 

a 

4 s  
3.2 

U '  

. .  
Y 

a 3  
0 0  
2 0  
0 0  
H 

0 

0 
2 0  
0 
p: 
E -  
-38. w 
4 

- 9 -  



The phase p a t h  approximation ob ta ined  by assuming 

s t r a i g h t - l i n e  propagat ion  i s  adequate  f o r  small a n g l e s  

of r e f r a c t i o n ,  when t h e  space r e c e i v e r  i s  c l o s e  behind the  

p l a n e t .  

The a n g l e  a by which t h e  ray p a t h  i s  r e f r a c t e d  can 

now be r e l a t e d  to @,(p).  The wave f r o n t s  emerging from 

the  p l a n e t a r y  ionosphere  have been p e r t u r b e d  a d i s t a n c e  

[ X O , ( p )  1 i n  t h e  z - d i r e c t i o n .  

the  wave normal d i r e c t i o n  g i v e s  

The cor responding  change i n  

o r  

40.3 dI(p) 
dP 

rJ = - -  
f 2  

(7) 

Which i s  v a l i d  f o r  small a n g l e s  of r e f r a c t i o n .  

F i g u r e  3 shows t h e  way i n  which the  50-Mc waves are 

r e f r a c t e d  by t h e  assumed model ionosphere .  

s c a l e  i s  d i f f e r e n t  i n  t h e  d i r e c t i o n s  l o n g i t u d i n a l  and 

t r a n s v e r s e  t o  t he  incoming p ropaga t ion  pa th .  The c r o s s  

s e c t i o n  of Mars, t h e r e f o r e ,  looks l i k e  am e l l i p s o i d  i n  t h i s  

Note t h a t  t h e  

space,  

The Chapman model has t h e  p r o p e r t y  t ha t  i t  causes  

two c a u s t i c s ,  each w i t h  t w o  branches,  to be formed behind 

t h e  ionosphere .  The s i g n a l  i s  r e c e i v e d  s imul t aneous ly  v i a  

10 
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three d i f f e r e n t  propagat ion  p a t h s  i n  t h e  r e g i o n s  beyond 

t h e  c a u s t i c s .  T h i s  phenomenon i s  a l s o  i l l u s t r a t e d  i n  

F ig .  3 ,  a l though t h e r e  the  c a u s t i c  c l o s e s t  t o  Mars i s  

degenera ted  i n t o  a one-branch c a u s t i c  due to shadowing 

by t h e  limb. The s p a c e c r a f t  t r a j e c t o r y  should  avoid  t h e  

c a u s t i c  r e g i o n s  i n  o r d e r  t h a t  t h e  phase and ampl i tude  

measurements n o t  be confused by m u l t i p l e  r a y s .  

It i s  impor tan t  to t a k e  i n t o  account  t h e  bending of 

t h e  p ropaga t ion  p a t h  when t h e  s p a c e c r a f t  i s  f a r  behind t h e  

p l a n e t .  Approximating t h e  p ropaga t ion  p a t h  wi th  two s t r a i g h t  

l i n e  segments a long  t h e  r a y  p a t h  asymptotes  g i v e s  the  phase 

p a t h  i n c r e a s e  @ due t o  t h e  p l a n e t a r y  ionosphere:  

2 @(rs)  = Q1(p) + a zS/2x ( c y c l e s )  

or 

@(rs)  = -40.3 I ( p ) / c f  + (812.0 z S /c f3) rdI (p) /dp12 

( 9 )  

where rs and z s  a r e  the c o o r d i n a t e s  of t h e  s p a c e c r a f t .  

An a b s o l u t e  phase p a t h  measurement y i e l d s  @ f o r  d i f f e r e n t  

p o s i t i o n s  of t h e  s p a c e c r a f t  a long  the  t r a j e c t o r y ,  and w e  

w i l l  t h e r e f o r e  cons ide r  0 a f u n c t i o n  of rs. 

The f i r s t  term on t h e  r igh t -hand  s i d e  of equa t ion  (9) 

i s  t h e  fami l ia r  phase e f f e c t  p r o p o r t i o n a l  t o  t he  e l e c t r o n  

con ten t  I ( p ) ,  and i n v e r s e l y  p r o p o r t i o n a l  t o  t h e  r a d i o  

f requency  f .  The last term i n  equa t ion  (9) accoun t s  f o r  

12 



t h e  i n c r e a s e  i n  phase p a t h  l e n g t h  caused by t h e  bending of 

the p ropaga t ion  pa th .  This  e f f e c t  i s  p r o p o r t i o n a l  t o  t h e  

squa re  of  the  g r a d i e n t  i n  I ( p )  and i n v e r s e l y  p r o p o r t i o n a l  

to f3. 

The @ ( r s ) - c u r v e  can be ob ta ined  from @,(p). This  

c o n s t r u c t i o n  i s  i n d i c a t e d  i n  Fig.  2. By moving from p o i n t  

A on the  Q1(p)-curve,  a d i s t a n c e  a z s  p a r a l l e l  t o  t h e  

a b s c i s s a  and a zs/2X c y c l e s  p a r a l l e l  t o  t h e  o r d i n a t e  

g i v e s  the cor responding  p o i n t  C on t h e  phase p a t h  curve  

2 

@(rs). 

The f requency  s h i f t  caused by the  ionosphere  i s  g iven  

by t h e  n e g a t i v e  of t h e  product of d @ ( r s ) / d r s  and the 

r a d i a l  s p a c e c r a f t  v e l o c i t y  drs /dt .  T h i s  f requency  i s  

shown i n  Fig.  4. drs /dt  = -3.5 km/sec, i t  i s  

seen  from Fig.  4 t h a t  t he  model ionosphere  adopted here 

produces a maximum frequency s h i f t  of about  6.5 cps.  

This e f f e c t  would be a d d i t i v e  to t h e  s t a n d a r d  doppler  s h i f t  

Assuming 

caused by r e l a t i v e  motion of t h e  t r a n s m i t t e r  and r e c e i v e r .  

A n  a b s o l u t e  measurement o f  t h e  phase p a t h  changes 

t a k i n g  p l a c e  du r ing  the  o c c u l t a t i o n  r e q u i r e s  on ly  a s i n g l e  

f requency.  This measurement y i e l d s  @(I-,), flaom which 

t h e  r e f r a c t i v e  index  p r o f i l e  of the e n t i r e  atmosphere may 

be c a l c u l a t e d  [F je ldbo  and Eshleman, 1965). With two 

f r e q u e n c i e s  one can a l s o  make a s e l f - c a l i b r a t e d  measure- 

ment of t he  ionosphe r i c  phase p a t h  e f f e c t s  a lone .  
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I n  t h e  fo l lowing  i t  w i l l  be assumed tha t  t he  two harmoni- 

c a l l y  r e l a t e d  f r e q u e n c i e s  f and m f  a re  used  t o  probe t h e  

ionosphe re  ( m  > 1). By count ing the  b e a t s  between f and 

t h e  l/m-subharmonic o f  m f ,  one o b t a i n s  a measure of d i f -  

f e r e n t i a l  phase  p a t h  [ A @ ( r s ) ] .  From e q u a t i o n  ( 9 )  i t  i s  

seen  t h a t  one can n e g l e c t  t he  e f f e c t  of  i o n o s p h e r i c  r a y  

p a t h  bending a t  t he  h i g h e s t  f r equency  m f  i f  m i s  s u f f i -  

c i e n t l y  large.  

For t he  d i f f e r e n t i a l  phase p a t h  [ A @ ( r s ) I f  one o b t a i n s :  

( T h i s  assumption i s  n o t  s t r i c t l y  n e c e s s a r y . )  

where t h e  f i r s t  b r a c k e t  on the  r i g h t - h a n d  s i d e  re fers  to 

t he  phase  p a t h  a t  f requency  f .  The p r o p a g a t i o n  p a t h  a t  

t h i s  f r equency  has a r a d i u s  of  c l o s e s t  approach  p.  The 

second b r a c k e t  re fe rs  t o  t h e  phase  p a t h  a t  f r equency  m f .  

Th i s  l a s t  p ropaga t ion  pa th  i s  a s t r a igh t  l i n e  w i t h  d i s t a n c e  

r from t h e  c e n t e r  o f  the p l a n e t ,  
S 

The e q u a t i o n  f o r  t h e  d i f f e r e n t i a l  i o n o s p h e r i c  phase  

p a t h  can be r e w r i t t e n  i n  t h e  f o l l o w i n g  form: 

where @ , ( p ) ,  Q1(rs), a ,  and X i n  the  l a s t  e q u a t i o n  

a l l  r e f e r  t o  t h e  lowes t  f r equency  f ,  Equat ion  (10)  can 

a l s o  be expres sed  i n  terms of  I ( p )  and t h a t  g i v e s :  



A O ( r s )  = - 4 0 0 3  I ( p ) / c f  + (812.0 zs/cf3) [ d I ( p ) / d p j 2  

The r e f r a c t i o n  i n  the  ionosphe re  causes  f o c u s s i n g  of 

the waves as Fig .  3 i l l u s t r a t e s .  Def in ing  the  r e f r a c t i o n  

g a i n  Gr as t h e  change i n  ampl i tude  due t o  d i f f e r e n t i a l  

r e f r a c t i o n  one o b t a i n s  

which i s  v a l i d  when l azs [  << rs. 

a l s o  be r e l a t e d  t o  t h e  second d e r i v a t i v e  of  t he  e l e c t r o n  

con ten t :  

The r e f r a c t i o n  g a i n  can 

Gr = -10 l o g  11 - (40.3 zs/f2)  d2 I (p) /dp21 (13)  

F i g u r e  5 shows how Gr would va ry  du r ing  o c c u l t a t i o n  

of t he  Chapman ionosphere  adopted here. 

The cu rves  i n  F igs .  2, 4, and 5 a r e  shown as a 

f u n c t i o n  of the  s t r a i g h t - l i n e  miss d i s t a n c e  

where 

i s  assumed t o  t a k e  p l ace  15,000 km behind Mars. Under 

t h e s e  c o n d i t i o n s  t h e  s p a c e c r a f t  w i l l  move w i t h  a v e l o c i t y  

of  t h e  o r d e r  of  3.5 km/sec i n  t h e  r - d i r e c t i o n .  

v e l o c i t y  t h e  probing  ray  p a t h  sweeps through t h e  ionosphe re  

i n  about  7 minutes .  The changes i n  the  phase  and ampl i tude  

(rs - R,), 

i s  t h e  r a d i u s  of t h e  p l a n e t .  The o c c u l t a t i o n  
RP 

A t  t h i s  
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take place relatively slowly during the occultation of the 

ionosphere, and a low data sampling rate may be sufficient 

to recover most of the variations. 

Equations (12) and (13) can be simplified further when 

In terms of the second derivative of the electron content, 

one obtains 

(175.0 

A more complete treatment of the phase and amplitude 

variations caused by refraction in a planetary ionosphere 

has been given by Fjeldbo [19641. 

It will now be outlined how the electron density 

profile can be determined from the radio occultation 

measurements. The solution to this problem can conveniently 

be divided into two steps: 

1. First, one can determine the straight-line phase 
path Q l ( p ) ,  or the electron content profile 
I ( p ) ,  
variations that occur during immersion and emersion. 

from a measurement of the phase or amplitude 

2. Second, one can use the electron content profile to 
calculate the electron density profile, assuming 
that the ionosphere may be considered spherically 
symmetrical in those regions probed by the radio 
signals. 

18 
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The f i r s t  s t e p  i n  t h i s  p rocedure  i s  e a s i l y  i l l u s t r a t e d  

by assuming t h a t  t h e  d i f f e r e n t i a l  phase p a t h  A @ ( r s )  i n  

e q u a t i o n  (10) h a s  been measured d u r i n g  immersion or emer- 

s ion .  When c o n s i d e r i n g  t h e  s l o p e  of A @ ( r s ) ,  one f i n d s  

t ha t :  

Ad[A@ (rs) l/drs = Ad[@l ( p ) + a  2 zs/2hl/d(p+azs)- (A/m 2 )dQl ( r s ) / d r s  

1 
m 

= (1 -7i) a 

f o r  small a n g l e s  of r e f r a c t i o n .  

T h i s  d e r i v a t i o n  y i e l d s  a as a f u n c t i o n  of  t h e  

s p a c e c r a f t  c o o r d i n a t e  rs: 

a = [ m 2 A / ( m 2 - 1 )  1 d [A@(rs )  l /drs  

I n  o t h e r  words, t h e  s l o p e  o f  

A @ ( r s )  a t  r = p + zsa bo th  y i e l d  the  a n g l e  o f  r e f r a c t i o n  

a f o r  t h e  p ropaga t ion  pa th  w i t h  r a d i u s  of  c l o s e s t  approach 

P *  

@,(p) and the  s l o p e  of  

S 

For t h e  r e g i o n s  where zsX {d[A@(rs)  l /d r  S 1 2  /2 i s  

n e g l i g i b l e ,  one o b t a i n s  from e q u a t i o n  (10): 

@,W = m2 A @ ( r s ) / ( m 2  - 1) 

s i n c e  the  p ropaga t ion  f o l l o w s  e s s e n t i a l l y  
S’ 

where p = r 

s t ra ight  l i n e s .  



Next, it w i l l  be shown how @,(p) may be o b t a i n e d  

from A @ ( r  ) i n  r e g i o n s  where d [ A @ ( r s ) j / d r s  > 0. From 

e q u a t i o n  (10) i t  i s  seen  tha t  knowing q l ( r S )  p e r m i t s  

c a l c u l a t i o n  of Ql(rS - az,) when A @ ( r s )  has been 

o b t a i n e d  from the  phase  p a t h  measurements. This p r o c e d u r e  

a l l o w s  a s t e p w i s e  d e t e r m i n a t i o n  of Q1(p) s t a r t i n g  a t  

large and moving towards small v a l u e s  of p .  

S 

A similar procedure  can be fo l lowed i n  r e g i o n s  where 

d [ A @ ( r s ) l / d r s  < 0 ,  When Q1(p) i s  known, one can f i n d  

Q1(p + a z s )  

c a l c u l a t e  @,(p) 

from equa t ion  (10). In t h i s  way one can 

by s t a r t i n g  a t  large and s u c c e s s i v e l y  

moving towards smaller  va lues  of p .  Having found @,(p) ,  

w e  a l s o  know the  e l e c t r o n  c o n t e n t  I ( p )  s i n c e  t he  two 

o n l y  d i f f e r  by a c o n s t a n t  f a c t o r .  

The p rocedure  d i s c u s s e d  here can a l s o  be u s e d  t o  

c a l c u l a t e  @,(p)  from an a b s o l u t e  measurement of  t h e  

i o n o s p h e r i c  phase  p a t h  i n c r e a s e  Q(rs).  T h i s  mainly 

amounts t o  s e t t i n g  l / m 2  e q u a l  t o  z e r o  i n  the  above 

expres s ion .  

Note t h a t  t h e  d i f f e r e n t i a l  phase  path method does  

n o t  y i e l d  @,(p) f o r  t hose  r a y s  tha t  are b e n t  f u r t h e r  

behind  the  p l a n e t  t h a n  the  c a l i b r a t i o n  s i g n a l .  T h i s  

l i m i t a t i o n  can be minimized by choosing the  lower  f r e -  

quency s u f f i c i e n t l y  h igh  such  t h a t  t h e  bending of  t h e  

p ropaga t ion  p a t h s  around t h e  p l a n e t a r y  l imb  i s  n e g l i g i b l e .  
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I .  

It can a l s o  b e  shown t h a t  group p a t h  o r  ampl i tude  

measurements may be used  to f i n d  t h e  e l e c t r o n  c o n t e n t  

I ( p )  [ F j e l d b o ,  19641, The last ne thcd  u t i l i z e s  e q u a t i o n  

(13). I n  p r a c t i c e  i t  would be d e s i r a b l e  t o  measure phase  

p a t h ,  g roup  p a t h ,  ampl i tude ,  and p o l a r i z a t i o n  d u r i n g  imrner- 

s i o n  and emersion to o b t a i n  b o t h  redundant  and complementary 

i n f o r m a t i o n  on t h e  p r o f i l e s  o f  e l e c t r o n  d e n s i t y ,  a b s o r p t i o n  

o r  s c a t t e r i n g  l o s s ,  and the p l a n e t a r y  magnet ic  f i e l d , ,  

The f i n a l  s t e p  i n  c a l c u l a t i n g  t h e  e l e c t r o n  d e n s i t y  

p r o f i l e  from t h e  phase  pa th ,  g roup  p a t h ,  or ampl i tude  

measurements w i l l  now be o u t l i n e d .  Equat ion  (5)  r e l a t e s  

the  e l e c t r o n  d e n s i t y  N to t h e  e l e c t r o n  c o n t e n t  I d p ) .  

Assuming s p h e r i c a l  symmetry one can show t h a t  t h i s  e q u a t i o n  

i s  a s p e c i a l  c a s e  of Abel ' s  i n t e g r a l  equa t ion .  So lv ing  

f o r  N ( p )  g i v e s :  

m 

where 4 i s  a dummy v a r i a b l e  o f  i n t e g r a t i o n .  

The p o l e  of ( [ 2 - p 2 ) - 3 i 2  may cause  i n a c c u r a c i e s  i f  

e q u a t i o n  (17) i s  used  i n  t h e  c a l c u l a t i o n  of  N ( p ) .  These 

e r r o r s  may be avoided  by expanding t h e  i n t e g r a n d  i n  a 

Tay lo r  s e r i e s  t h e  i n t e r v a l  from p to p+Ap and e v a l u a t i n g  

t h i s  p o r t i o n  of  t he  i n t e g r a l  a n a l y t i c a l l y .  I n  t h i s  way 

one o b t a i n s :  
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where Ap shou ld  be chosen small enough such  t h a t  I ( p )  

can be approximated by its t a n g e n t  i n  t h i s  i n t e r v a l .  I n  

d e r i v i n g e q u a t i o n  (181, i t  was a l s o  assumed tha t  I ( E )  i s  

n e g l i g i b l e  f o r  E, l a r g e r  t han  t h e  o u t e r  r a d i u s  pi o f  t h e  

ionosphe re ,  Numerical c a l c u l a t i o n s  o f  N ( p )  u s i n g  e q u a t i o n  

(18) have t h e  advantage  t h a t  i n t e g r a t i o n  i s  r e q u i r e d  o n l y  

o v e r  a f i n i t e  i n t e r v a l  i n  4, and t h a t  t h e  i n t e g r a n d  con- 

t a i n s  no p o l e  i n  t h i s  r e g i o n ,  

Measurements made dur ing  immersion and emersion g i v e  

t h e  e l e c t r o n  d e n s i t y  p r o f i l e  a t  two d i f f e r e n t  l o c a l  times, 

l a t i t u d e s ,  and seasons .  These p r o f i l e s  are  fu r the rmore  

r e l a t e d  to the  n e u t r a l  c o n s t i t u e n t s  i n  t h e  atmosphere,  A 

measurement of  e l e c t r o n  c o n c e n t r a t i o n  p l u s  knowledge of  

recombina t ion  and a t tachment  c o e f f i c i e n t s  pe rmi t  t h e  pro-  

d u c t i o n  r a t e  t o  be d e t e a i n e d  f o r  s teady s t a t e  c o n d i t i o n s .  

T h i s ,  i n  t u r n ,  p e r m i t s  t h e  c a l c u l a t i o n  of t h e  c o n c e n t r a t i o n  

of t h e  i o n i z a b l e  c o n s t i t u e n t s ,  s i n c e  the  i n t e n s i t y  of  t h e  

i o n i z i n g  a g e n t s  are  r e l a t i v e l y  w e l l  known from r o c k e t  and 

s a t e l l i t e  measurements, 
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The lower f requency  s i g n a l s  may s u f f e r  some a b s o r p t i o n  

as the  p ropaga t ion  path passes  through the lower i o n o s p h e r i c  

r eg ions .  In  t h a t  case i t  would n o t  be p o s s i b l e  to u s e  the  

ampl i tude  measurements a t  the lower f r equency  to c a l c u l a t e  

t h e  e l e c t r o n  d e n s i t y  p r o f i l e  u n l e s s  a s e p a r a t i o n  of  r e f r a c -  

t i o n  g a i n  and a b s o r p t i o n  can be made u s i n g  t h e i r  d i f f e r e n t  

dependence on zS .  On t h e  o t h e r  hand, t h e s e  ampl i tude  

measurements may be  u s e d  to e s t i m a t e  t h e  v e r t i c a l  c o l l i s i o n  

f requency  p r o f i l e ,  assuming tha t  the e l e c t r o n  d e n s i t y  p r o f i l e  

has been found f r o m  t h e  phase-path or group-path measurements. 

The c o l l i s i o n  f r equency  i s  a g a i n  re la ted  t o  t h e  t empera tu re  

and d e n s i t y  of t he  n e u t r a l  gas. 

A non- sphe r i ca l  d i s t r i b u t i o n  of t he  e l e c t r o n  d e n s i t y  

w i l l  cause some ambigui ty  s i n c e  i t  i s  n e c e s s a r y  to know 

the form of t he  h o r i z o n t a l  v a r i a t i o n s  i n  o r d e r  to determine  

t h e  v e r t i c a l  d e n s i t y  p r o f i l e  from the  c o n t e n t  p r o f i l e .  

However, examples t ak ing  i n t o  account  the s o l a r  z e n i t h  

a n g l e  dependence i n  t h e  Chapman l a y e r ,  which is  omi t t ed  

i n  e q u a t i o n  (l), show t h a t  the average  e l e c t r o n  d e n s i t y  

p r o f i l e  can be ob ta ined  w i t h  good accuracy  when t h e  h o r i -  

z o n t a l  v a r i a t i o n s  i n  N are  n e g l e c t e d  i n  t h e  r e g i o n s  

probed by t h e  r a d i o  s i g n a l s  [F je ldbo ,  19641, 



Changes in the earth's ionosphere and in the inter- 

planetary medium may also affect the measurement. For 

instance, the maximum rate of change of ionospheric electron 

content in the afternoon and evening (the time of Martian 

encounter for the 1964-65 tnission) is approximately 10 13 

elec/m'/sec. From ionosonde measurements it is conserva- 

tively estimated that 80 percent of this variation may be 
predicted, leaving an uncertainty of only f 2 x 10 12 

2 elec/m /sec. 

length uncertainty at 50 Mc of  only 0.005 wavelengths/sec, 

or about one wavelength every three minutes. 

of approximately 7 minutes during which the minimum ray 
path altitude varies from about 1500 km to the Martian 

surface, the earth's ionosphere would contribute an uncer- 

tainty of  only about t w o  wavelengths to the total of approx- 

imately 600 wavelengths. Measurements of the electron 

content near the earth with moon echoes, or by using signals 

from satellites, might further reduce this uncertainty. 

This rate of change corresponds to a wave- 

In the period 

There does not appear t o  be sufficient data at present 

to make a good estimate of the possible interplanetary 

effect. One might expect that if' a major solar stream 

crosses a large fraction of the ray path during the encounter 

measurements, it could be difficult to separate the effects. 

With a steady solar wind, there may be fluctuations due t o  

temporal and spatial irregularities, but we know of no good 

24 



measures of this effect. The moon echo measurements 

being conducted at Stanford could perhaps set an upper 

limit [Howard et al, 19641, It is found that there are 

RMS fluctuations in the frequency of the reflected echoes 

of about 0.1 cps at 25 Me for a 2.5 second pulse. No doubt 

most or all of this uncertainty is due to ionospheric irreg- 

ularities, libration of the rough lunar surface, and 

measurement limitations. However, if it is pessimistically 

assumed that all of it is due to irregularities in the 

interplanetary medium, and that the space and time variations 

can be treated as independent and random, one finds an 11 

cycle uncertainty in a 7 minute measurement of phase path 
from the earth to the Mars probe, This very pessimistic 

assumption for an upper limit of the uncertainty due to 

the interplanetary medium during quiet solar conditions 

thus leads to an uncertainty in phase path which is much 

less than the representative Martian ionospheric effect 

illustrated in Fig. 2. 

The radio waves are also refracted by the lower 

neutral atmosphere and diffracted at the planetary limb. 

These effects provide a sensitive measure of scale height 

and density in the neutral atmosphere [Fjeldbo and Eshleman, 

19651t especially if the experiment provides separation 

of dispersive ionospheric refraction effects from the 

non-dispersive effects of the neutral atmosphere. 
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I n  o r d e r  a l s o  t o  i l l u s t r a t e  t h e  advantage of u s i n g  two 

f r e q u e n c i e s  i n  t h e  de t e rmina t ion  of  t h e  r e f r a c t i v e  index  

p r o f i l e  of t h e  lower n e u t r a l  atmosphere,  i t  w i l l  i n  t h e  

f o l l o w i n g  be assumed t h a t  @,(p) h a s  been c a l c u l a t e d  from 

measurements a t  two f r e q u e n c i e s  f and m f .  Taking i n t o  

account  t h e  e f f e c t  of both the i o n i z e d  and t h e  n e u t r a l  p a r t  

of t h e  atmosphere,  one can r e w r i t e  equa t ion  ( 2 )  i n  the 

f o l l o w i n g  formt 

too 

@ 1 ( P ’ f )  = ‘l (pn - 1) dz - - 40’3 cf  e \’ Ndz - U 
- W  

where Q 1 ( p , f )  deno tes  the  s t r a i g h t - l i n e  phase p a t h  a t  

f requency  f ,  X t h e  f r e e  space  wavelength cor responding  

t o  t h e  f requency  f ,  and pn t h e  r e f r a c t i v e  index  p r o f i l e  

o f  t h e  n e u t r a l  atmosphere. S i m i l a r l y ,  one can w r i t e  f o r  

t h e  s t r a i g h t - l i n e  phase pa th  a t  f requency  m f !  

40*3 Ndz (pn - 1) dz - - 
-W 

Q l ( p , m f )  = - W  cfm 

From e q u a t i o n s  (19) and ( 2 0 ) ,  one can show that: 

from which t h e  v e r t i c a l  r e f r a c t i v e  index  p r o f i l e  o f  t h e  

lower n e u t r a l  atmosphere may be determined.  Equat ion (21)  
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shows that  i t  i s  n o t  necessa ry  t o  assume a s p h e r i c a l l y  sym- 

m e t r i c  i onosphe re  i n  o r d e r  t o  de te rmine  the r e f r a c t i v e  

index  p r o f i l e  of  the n e u t r a l  a tmosphere,  when two f r equen-  

c ies  are used  i n  the  o c c u l t a t i o n  experiment .  

i s  ve ry  impor t an t  i n  cases  where ve ry  large i o n o s p h e r i c  

e f f e c t s  might o t h e r w i s e  mask the  e f f e c t  of a n e u t r a l  atmos- 

This r e s u l t  

phere  of low d e n s i t y .  

The bes t  cho ice  o f  f r e q u e n c i e s  f o r  the  r a d i o  o c c u l t a t i o n  

experiment  depends on t h e  e l e c t r o n  d e n s i t y  p r o f i l e  of  the 

ionosphere  t o  be explored ,  and on the  d i s t a n c e  between the  

s p a c e c r a f t  and the p l a n e t  d u r i n g  the o c c u l t a t i o n .  

a lower l i m i t  t o  t h e  f requency  t h a t  can be used,  i f  t h e  

c a u s t i c  r e g i o n  i s  t o  be avoided.  

There i s  

T h i s  minimum u s a b l e  

f requency  fmin i s  given by: 

F 

min 

m a x  

Equat ion (22)  can be ob ta ined  from e q u a t i o n  (13) by making 

u s e  of t h e  f a c t  that  the  r e f r a c t i o n  g a i n  Gr approaches 

i n f i n i t y  a t  t he  c a u s t i c .  

It i s  seen  from equat ion  (22) t ha t  t h e  minimum u s a b l e  

f requency  fmin i s  p r o p o r t i o n a l  t o  t he  squa re  r o o t  of  the  

s p a c e c r a f t - p l a n e t  s e p a r a t i o n  d i s t a n c e  z s  and t h e  maximum 

of  t h e  second d e r i v a t i v e  of t he  e l e c t r o n  con ten t  

Fo r  a s i n g l e  Chapman-layer model, one f i n d s  t ha t  

p r o p o r t i o n a l  t o  t h e  maximum plasma f requency  i n  t he  

ionosphe re  [ F j e l d b o ,  19641. 

I ( p ) .  

fmin i s  
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A 50-Me signal has been used in the numerical examples 

in this publication. 

elec/m3 peak density obtained by Chamberlain h 9 6 2  1 e 
Atmospheric models developed more recently suggest that 

the peak electron density might be as high as 10'3 elec/m3 

[Norton, 19641, so that a frequency around 500 Me may, 

therefore, be a better choice. 

This choice was based on the 10'' 

A n  even higher minimum usable frequency is obtained if 

one considem the possibility of patches of dense sporadic-E 

ionization similar to those observed in the earth's iono- 

sphere. Very large density gradients may be encountered 

here, so that fmin estimated from equation (22) might be 

many thousands of megacycles. This emphasizes the importance 

of using frequencies considerably higher than the maximum 

plasma frequency, although increasing the frequency decreases 

measurement precision for other regions of the ionosphere, 

Possible signal reception over several. different propagaticn 

paths due to sporadic-E would not affect the quality of the 

data for the rest of the ionosphere, However, ionization 

patches of this type would tend to reduce the accuracy with 

which the refractive index profile of the lower neutral at- 

mcsphere could be determined. This last situation may be 

avoided by increasing the lawer radio frequency or de- 

creasing the planet spacecraft separation distance. 

Under certain conditions of ionospheric layer density, 

sporadic-E gradients, and neutral atmospheric 
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density, it may be highly advantageous to use at least 

three frequencies if both ionospheric and atmospheric data 

are to be obtained with good accuracy. 

To be discussed next is the power and antenna gain 

required to conduct the ionospheric radio occultation 

experiment. Cosmic noise is the limiting factor in signal 

reception at 50 Mc. Assuming a signal-to-noise ratio at 

the space receiver of about 25 db in a 30 cps bandwidth, 

and an earth-Mars distance of 1.5 Astronomical Units, 

one finds that it is necessary to radiate about 7 x 10 

watts/steradian during the occultation. 

can be satisfied with a 75 foot diameter dish and a 1200 kw 

CW transmitter. A 150 foot dish requires a 300 kw trans- 

mitter. These numbers all refer to a 50 Mc signal. The 

power requirement at 500 Mc is down by about a factor of 

ten, mainly due t o  a lower noise temperature, and 30 kw 

should be sufficient if a 150 foot dish is used for trans- 

mission from the earth. 

6 

This requirement 

It is seen from these power estimates that it would 

not be feasible at present to transmit a signal in the VHF 

range from the spacecraft and receive it on the earth. At 

these frequencies, one has to make the transmission from 

the ground and telemeter measurements of the changes in 

phase and amplitude back to the earth. 
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Conci-Jsions: It Ts necessar.y tc fisve f s2r . ly  good a tmospher ic  

models b e f o r e  more s t ? p z i s t i e 3 + e d  pissixis can be des?gned 

t 9  e x p l o r e  t h e  plscets i n  o u r  s o l a r  systerr. Er2try probes  

can a l s o  be used  to s t u d y  t h e s e  atmospheres [ S e i f f  and 

Reese9 19651, Hzwever, the psdlc  o c c u l t a t i o ?  method i s  

s u p e r i o r  from t h e  p a i n t  of vlew of  s i m p l f c i t y ,  I n  a d d i t i o n ,  

t h i s  method pelamits d l ; l rna l  and s e a s c n a l  changes i n  df f f ' e r -  

e n t  r e g i o n s  G f  t h e  s tnosphe re  to be s t u d i e d  frot., a s i n g l e  

o r b i t k g  s a t e l l i t e ,  3r, t h e  b s s l s  of  t k e s e  c - > n s l d e r s t i o n s ,  

i t  i s  sugges ted  that the two f requency ,  bistatic, r a d a r -  

a c c u l t a t i o n  experimect  be gseds  p a r t l c u l s r l y  f o r  t h e  

i n i t i a l  e x p l c r a t i o n  c f  p l s n e t a r y  stmb2sptteres, 

lf an o r b i t i n g  s a t e i l - f . t e  i s  used3  cme might a l s o  

employ t h e  r a d i o  echo laef lec ted  from t h e  p l s n e t  to s t u d y  

t h e  p l a n e t a r y  s u r f a c e ,  

p repa red  to d i s c u s s  t b i s  s u b j e c t .  I t  shc.Lld, fu r the rmore ,  

be  mentioned t h a t  t h e  spacecFaf t  eqdiprnerat, r e q u i r e d  f o r  

A s e p a r a t e  p d b l i c a t i o n  i s  be lng  

t h e  twc-frequency occdl ta5ic:  experiment  can ve ry  w e l l  

be used to monitor  t h e  average i n t e r p l a n e t a r y  e l e c t r o n  

d e n s i t y  w h i l e  t h e  spwe probe i s  I n  t r d n s i t ,  
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